Complementary Power Transistors

DPAK For Surface Mount Applications

Designed for general purpose power and switching such as output or driver stages in applications such as switching regulators, converters, and power amplifiers.

Features

- Lead Formed for Surface Mount Application in Plastic Sleeves (No Suffix)
- Straight Lead Version in Plastic Sleeves ("-1" Suffix)
- Electrically Similar to Popular D44H/D45H Series
- Low Collector Emitter Saturation Voltage $V_{CE(sat)} = 1.0 \text{ Volt Max } @ 8.0 \text{ Amperes}$
- Fast Switching Speeds
- Complementary Pairs Simplifies Designs
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V
- These are Pb-Free Packages

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V_{CEO}	80	Vdc
Emitter-Base Voltage	V _{EB}	5	Vdc
Collector Current - Continuous - Peak	I _C	8 16	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	20 0.16	W W/°C
Total Power Dissipation (Note 1) @ T _A = 25°C Derate above 25°C	P _D	1.75 0.014	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	6.25	°C/W
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	71.4	°C/W
Lead Temperature for Soldering	T_L	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

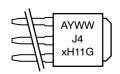
 These ratings are applicable when surface mounted on the minimum pad sizes recommended.

1

ON Semiconductor®

http://onsemi.com

SILICON POWER TRANSISTORS 8 AMPERES 80 VOLTS, 20 WATTS


MARKING DIAGRAMS

AYWW J4 xH11G

DPAK CASE 369C STYLE 1

DPAK-3 CASE 369D STYLE 1

A = Assembly Location

Y = Year WW = Work Week J4xH11 = Device Code x = 4 or 5

G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			U.	U.	U	
Collector–Emitter Sustaining Voltage $(I_C = 30 \text{ mA}, I_B = 0)$		V _{CEO(sus)}	80			Vdc
Collector Cutoff Current (V _{CE} = Rated V _{CEO} , V _{BE} = 0)		I _{CES}			1.0	μΑ
Emitter Cutoff Current (V _{EB} = 5 Vdc)		I _{EBO}			1.0	μΑ
ON CHARACTERISTICS		•	•	•	•	
Collector-Emitter Saturation Voltage (I _C = 8 Adc, I _B = 0.4 Adc)		V _{CE(sat)}			1	Vdc
Base–Emitter Saturation Voltage $(I_C = 8 \text{ Adc}, I_B = 0.8 \text{ Adc})$		V _{BE(sat)}			1.5	Vdc
DC Current Gain (V _{CE} = 1 Vdc, I _C = 2 Adc)		h _{FE}	60			-
DC Current Gain (V _{CE} = 1 Vdc, I _C = 4 Adc)			40			
DYNAMIC CHARACTERISTICS		•	•	•	•	
Collector Capacitance (V _{CB} = 10 Vdc, f _{test} = 1 MHz)	MJD44H11 MJD45H11	C _{cb}		45 130		pF
Gain Bandwidth Product (I _C = 0.5 Adc, V _{CE} = 10 Vdc, f = 20 MHz)	MJD44H11 MJD45H11	f _T		85 90		MHz
SWITCHING TIMES			1			
Delay and Rise Times (I _C = 5 Adc, I _{B1} = 0.5 Adc)	MJD44H11 MJD45H11	t _d + t _r		300 135		ns
Storage Time ($I_C = 5 \text{ Adc}$, $I_{B1} = I_{B2} = 0.5 \text{ Adc}$)	MJD44H11 MJD45H11	t _s		500 500		ns
Fall Time ($I_C = 5 \text{ Adc}$, $I_{B1} = I_{B2} = 0.5 \text{ Adc}$	MJD44H11 MJD45H11	t _f		140 100		ns

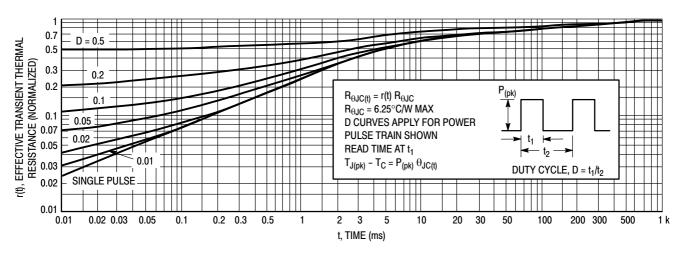


Figure 1. Thermal Response

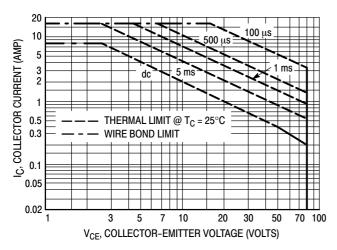


Figure 2. Maximum Forward Bias Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 2 is based on $T_{J(pk)} = 150^{\circ}\text{C}$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}\text{C}$. $T_{J(pk)}$ may be calculated from the data in Figure 1. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

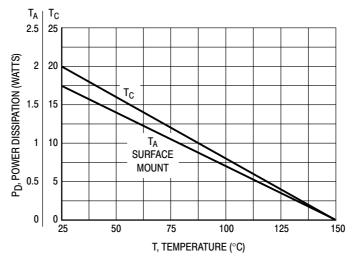


Figure 3. Power Derating

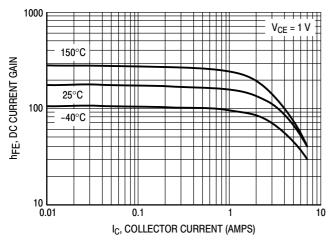


Figure 4. MJD44H11 DC Current Gain

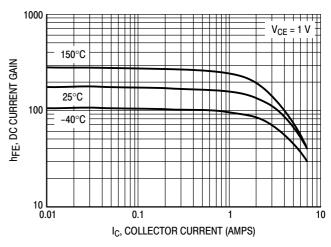


Figure 5. MJD45H11 DC Current Gain

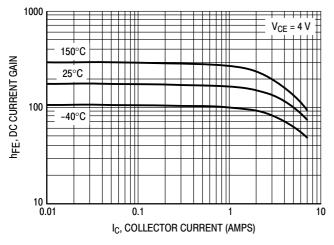


Figure 6. MJD44H11 DC Current Gain

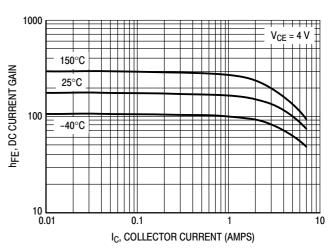


Figure 7. MJD45H11 DC Current Gain

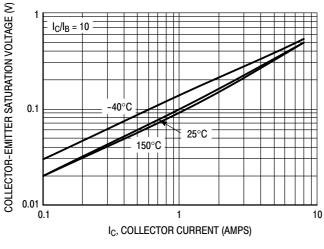


Figure 8. MJD44H11 Saturation Voltage $V_{\text{CE(sat)}}$

Figure 9. MJD45H11 Saturation Voltage $V_{\text{CE(sat)}}$

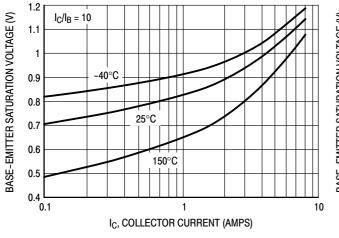


Figure 10. MJD44H11 Saturation Voltage $V_{BE(sat)}$

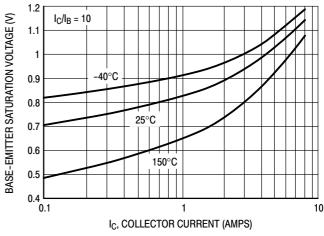
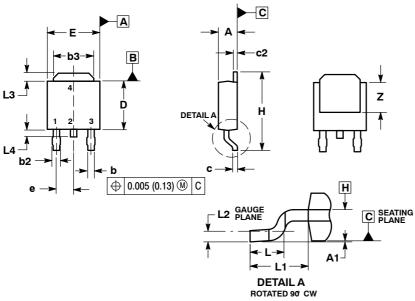


Figure 11. MJD45H11 Saturation Voltage $V_{BE(sat)}$


ORDERING INFORMATION

Device	Package Type	Package	Shipping [†]	
MJD44H11G	DPAK (Pb-Free)	369C	75 Haita / Dail	
MJD44H11-1G	DPAK-3 (Pb-Free)	369D	- 75 Units / Rail	
MJD44H11RLG	DPAK (Pb-Free)		1800 Tape & Reel	
MJD44H11T4G	DPAK (Pb-Free)	2000	0500 Table 9 Paul	
MJD44H11T5G	DPAK (Pb-Free)	369C	2500 Tape & Reel	
MJD45H11G	DPAK (Pb-Free)		- 75 Units / Rail	
MJD45H11-1G	DPAK-3 (Pb-Free)	369D		
MJD45H11RLG	DPAK (Pb-Free)	369C	1800 Tape & Reel	
MJD45H11T4	DPAK			
MJD45H11T4G	DPAK (Pb-Free)		2500 Tape & Reel	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DPAK CASE 369C-01 ISSUE D

- NOTES:

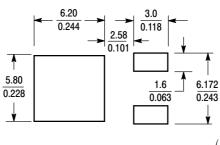
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCHES.

 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED a 006 INCHES PER SIDE
- NOT EXCEED 0.006 INCHES PER SIDE.

 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

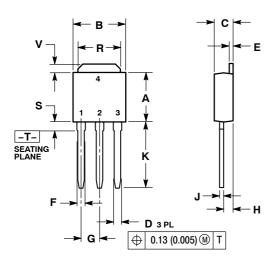

 6. DATUMS A AND B ARE DETERMINED AT DATUM

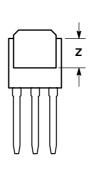
	INCHES		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090 BSC		2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108 REF		2.74 REF		
L2	0.020	BSC	0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
7	0 155		3 93		

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER

4. COLLECTOR

SOLDERING FOOTPRINT*




(mm inches) SCALE 3:1

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK-3 CASE 369D-01 **ISSUE B**

NOTES

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETER	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29 BSC	
Н	0.034	0.040	0.87	1.01
۲	0.018	0.023	0.46	0.58
Κ	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 1:

- BASE PIN 1.
 - COLLECTOR
 - 3.
 - EMITTER COLLECTOR

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make triangles without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative